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Inversion of conductivity profiles using the Volterra functional method
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The Volterra functional method is used for the electromagnetic inverse problem. A general analytical
procedure and symbolic computer code implementation are successfully constructed that provides an al-
ternative way for the inverse problem. The conductivity profiles, as an example, are reconstructed by the
method. The results show that using only three terms of an expansion gives an obvious improvement

when compared with former approximations.
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1. INTRODUCTION

There have been many interesting results in the recon-
struction of electromagnetic parameters of one-
dimensional distribution, such as the direct formula for
dielectric medium profiles given by Ladouceur and Jor-
dan [1,2]. Recently, Ge and Chen (3] (one of the authors
of this paper) derived an explicit formula for the conduc-
tivity profile of the conducting medium. Another result
was obtained by Cui and Liang [4] by using the mi-
crowave networking technique. In this paper, we present
a very different method for reconstructing the conductivi-
ty profile: the Volterra functional method. Beginning
with the Riccati equatibn, a general analytical procedure
and symbolic code implementation are successfully con-
structed, and a result with three terms expansion is ob-
tained. Some numerical experiments show that the re-
sults given by the method of this paper give better results
in comparison with former approximations.

II. ANALYTICAL PROCEDURE AND FORMULA

Let us consider a half-space problem in one dimension
with an interface at z =0. The medium of interest occurs
in the right region z>0. A plane wave, of which the
electric field E is perpendicular to the plane of incidence,
impinges on the interface from the left region z <0. In
the right region z >0, by introducing a wave impedance

(5]

Zg =L (1)
§0 H, y
and, according to electromagnetic theory [6], one obtains
dZ
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where k and £, are the wave number and wave impedance
in free space, and 6 is the angle of incidence. When =0,
Eq. (2) becomes
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A relation between reflection coefficient (k) and wave
impedance Z (z,k),

Z(0,k)+1
is obtained according to Eq. (1). Here (and below), k, is

simply denoted by k. In free space, it can be proved that
Z(z,k)=1. In the medium, Z (z,k) is expanded as

Z(z,k)=1+€Z,(z,k)+€Z,(z,k)+ -+ , &)

r(k)= 4)

where € is a dummy variable (used to keep track of a suc-
cessive order, whose value is finally set equal to 1). The
above expansion is valid only for the case when the
reflection coefficient is not too large. Since the reflection
information is determined by the distribution of the o(z)
profiles, r(k) and each Z,(z,k) (p =1,2,...) can be re-
garded as functionals of o(z). The functional for r(k)
can be expanded by multilinear operators, i.e.,

r(k)=72 6p2p[0’0’ .,0'] ’ (6)
p=0
where A4 p is a multilinear operator and has a linear

dependence on each one of its p arguments [i.e., o(z) ap-
pears p times in 4,]. On the other hand, substituting Eq.
(5) into Eq. (4) gives
r(k)=1Z,(0,k)e+1[2Z,(0,k)—Z3(0,k)]€
+1[Z5(0,k)—Z,(0,k)Z,(0,k)

+1Z3(0,K)1€+ - - - . )}
Comparing Egs. (6) and (7), one obtains
4,[0(2)]=2,(0,k)
4,[0(2),0(2)]=1[2Z,(0,k)—Z2(0,k)] ,

A5[0(2),0(2),0(2)] ®)
=[Z;(0,k)—Z,(0,k)Z,(0,k)+1Z3}(0,k)] ,
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The above equations determine the connotations of each
multilinear operator A Below, the o(z) dependence of
Z,(0,k) will be camed out. Substituting Eq. (5) into the
Riccati equation, i.e., Eq. (3), gives

F=§y0(z)~0(e)k ,
F,=2£,0(2)Z,+jkZ? ,
Fy=£0(2)[Z3+22,]1+j2kZ,Z, ,

z,
_=j2kzp+Fp[Zl,Zz, RPN ,ZP_I;U(Z)]

e and Z, simply means

Z,(z,k)=Z,)[z,k;0(z),0(2),...,0(2)],

where o(z) appears p times.

where Solving differential equations Eq. (9), we have

Z,(5,k)=Z,(0, ke + e [ °F [ Z,(2',k),Z,(2',k), . .., Z, (2", K)o (z)]e ¥ dz (1

P

where Z,,(0,k) can be obtained by making a Fourier transformation of Eq. (9), i.e.,

Z,[0,k;0(2),...,0(2)]=— f; “F,(Z,(2',k),Zy(2" k), ..., Z,_\(2',k);0(z")]e I dz" . (12)

14

It is clear that term Z,(z,k) is determined by making use of Egs. (10), (11), and (12). By using Eq. (12), Eq. (11) can be
simplified as

Z,(z,k;0,0,...,0]= —eka’fz+°°Fp[zl(z',k), s Zy (2 k)s0(z")]e I dy (13)

Equations (8), (12), and (13) give just the concrete meanings of each operator A4,. - Substituting F; in Eq. (10) into Egs.
(12) and (13), Z,(0,k) and Z,(z,k) can be calculated. Substituting Z,(0,k), Z,(z,k), and F, in Eq. (10) into Egs. (12)
and (13), Z,(0, k) and Z z(z,k) can be calculated, and so on. As an example, the final results of each Z,(0,k) in 4,, A,

and 4 3, respectively, are of the forms,

Zl[o»k;0]=“§ofo “o(z)e Ikeqgz

Z,[0,k;0,01=1Z3(0,k)—& [ *“dz [a(z>f+°°a(z'>e —j2k gy
0 z
. = 173 13 fte
Z3[O,k,a,a,a]-—Zl(O,k)Zz(O,k)-TZ,(O,k)——;gofo

_§3f0+m [f+wo(z') [ffwa(z”)e_ﬂ"z"dz" ]dz'

Making an inverse Fourier transformation of Eq. (14),
one obtains

26-0 +

o(z)=——— 17
T

Z,(0,k)e/*dw ]

t=2z/c

Note that Z,(0, k) is the first term of Eq. (7), if Z,(0,k) in
Eq. (17) is substituted as an approximation by 2r(k), and
the result of o(z) in Eq. (17) obtained by such a substitu-
tion is symbolized by o (z), so that one obtains

01(2)="'4€0R(t)|t=2x/c ’ (18)
where
RO=" ["rkeiode (19)
TY0

is the reflection coefficient in the time domain. Equation
(18) will be taken as the expansion center of the Volterra
functional series for conductivity profiles, i.e.,

(14)
, (15)
T o (2")e ~Ik2k gy ] e/ (z)dz
o(z)dz ,
(16)
l
o(z)=3 o0,(2)
=1
+ + +
o0,(2)= o(x)o(xy). . .ox,)
fo fo fo 1(x)oyix, 1 20)
Xy'™(z;x,,%5, ..., X,)

Xdxdx,. . .dx, ,

which is the generalization of Taylor series in functional.
It can clearly be seen that the first Volterra kernel y‘! is

yMz;x)=8(x,—z) .

The other kernels ¥ will be determined in the follow-
ing. Substituting Eq. (20) into Eq. (6) and considering the
linearity of operators A on each argument, one can ob-
tain

A,[o,]=2r(k),
21[02]—“‘

(21

Ayloy,04], (22)
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A A A A ~_ 2€ © .
4\[o3]=—A3[0,,0,]— 4,[03,0,]— 43[01,01,04], AT )=—To T2Oeido .

0
23 By using Eqs. (8), (14), and (15), Eq. (22) gives

Where o)== A7 {Ay[01,0,]} =L (2 [Toy(2")dz', (24)

A4,[01,0,]1=2,(0,k;0,,0,)—1Z,(0,k;0,)Z,(0,k;;0,) , _ 0

. which also means

Ay[04,0,1=2,(0,k;0,,0,)—32Z,(0,k;0,)Z,(0,k;0,) ,
2l02011=21(0,k502,01)732,(0,k;02)Z, (0, k30, Y PAz521,x0)=£B(x, —2)H(z —x,) ,

where H(z —x,) is the Heaviside function. The same

Comparing Eq. (21) with Egs. (18) and (17) gives way, one obtains
J
o;3(2)=— ;1\1_l { 22[01702]"‘ 22[02:01]*' 23[01:01:01]]
=2£2 [al(z)foz [foxal(x')dx’ ]al(x)dx—%foz [f:al(x’)al(z+x —x')dx’ ]a,(x)dx] , (25)

which also gives the concrete meaning of the third hernal
Y 3Nz;x,,%,,%3)=2£38(x, —2)H(z —x,)H(x3—Xx,)
—12H(z —x | )[H(z —x,)—H(x, —x,)]8(x3—z—x, +x,) .
By using Eq. (18), the functional expansion of o(z) up to three terms can be written as

o(2)=—4ey [R() [1=2 [ R()r'+8 [ 'arR(e") [ "Re")ar” |

— [YarR(e") ['RIR(t+1'—t")de” (26)
0 t

t=2z/c

r

For the case 6+0°, by making the transformations to make the changes
k—k'=kcos@ (equivalent to z—z'=z cosf),

: —4 —4 2 = = .
Z—>Z'=Z cosO (equivalent to R —R'(t)=R(t)cos6), €o—> —4€C0s°0, 1=2z/c—1=2zc0s6/c
o—o'=c/cosf, Eq. (2) is transformed to be Eq. (3).
The final results of Eq. (26) after the transformation are III. RESULTS ANALYSIS
To test the applicability of this scheme, two examples
A with one and two piecewise homogeneous stratified media
I are considered. Based on Eq. (26), the reconstruction of
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FIG. 1. Comparison of three reconstruction results for a sin- s, .
gle slab medium. (a) The Born approximation, which is just the B il . et
first term of this paper’s results. (b) The results form Ref. [3]. 0.0 0.5 1.0 L5
(c) The results of this paper by three functional terms, i.e., by DISTANCE(m)

Eq. (26), where 0=0.003 corresponds to &,0=1.13 with
£=1207Q. (d) The results from Ref. [4]. (e) The ideal profiles. FIG. 2. Comparison of three reconstruction results for two
Note that the ordinate is scaled by £,0(z) (within the region slab media. (a), (b), (c), (d), and (e) denote the same meanings as
£00(z) = 1) in Ref. [4], not by o(2) as in this paper. in Fig. 1, where o =0.004 corresponds to §,o =1.51.
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the conductivity profile from the reflection data can be
carried out. The reflection coefficient r(k), instead of ex-
perimental data, can be produced numerically according
to electromagnetic theory. Then R (¢) can be calculated
through the fast Fourier transform algorithm by Eq. (19).
For comparing with the other results, five curves are
given in Figs. 1 and 2, in which it is can be shown that a
better reconstruction is obtained by using the method of
this paper. However, there still is some discrepancy be-
tween the ideal profile and the profiles obtained by using
Eq. (26). However, it would be expected that the results
will be ameliorated by taking more terms into account,
providing that, for practical problems, the information
coming from the very deep layers (corresponding to the
very lower frequency) is strong enough. Higher-order
terms in the expansion may be beneficial to fit the curve
into the ideal profiles. However, the terms higher than
three order are difficult to reduce by handwork. Howev-
er, by using a computer to reduce the procedure (such as

REDUCE and MATHEMATICA), they are easily calculated
according to the symbolic code and implementation
scheme presented by this paper. Furthermore, this
method can also be used in the reconstruction
€,(z)—o(z) profiles and €,(z)—pu,(z) profiles, and some
results have been obtained which have taken in the con-
tinued composition. It should be pointed out that, for
the practical problems, because the information coming
from the deep layer (corresponding to the lower frequen-
cy) is very weak (this is the reason why a high-frequency
approximation is reasonable). Therefore, even if a
method which may effectually make use of all the fre-
quency information including the very low-frequency sig-
nal were used, it would still be difficult to fit the recon-
structed results into the practical profiles very well. Here
we underline that the method of this paper provides a
way for the reconstruction of conductivity profiles; in ad-
dition, it gives a better approximation than the former re-
sults [3,4].
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